APPLICATION NOTIE

DID YOU KNOW ?
The number “googol” is ten raised to the hundredth power or 1 followed by 100 zeros. Edward Kasner (1878-
1955) a noted mathematician is best remembered for the “googol”. Dr. Kasner asked his nephew, Milton Sirotta,
what he would call a number with 100 zeros; nine-year-old Milton suggested "googol." and the word “googol”
was born. Dr. Kasner topped Milton with a bigger number the “googolplex”, which is googol raised to the googol
power. Some estimate that writing the digits in a googolplex requires more space than in the known universe.

Low Pass Filter Rise Time vs Bandwidth

Preamble

Scores of text books and hundreds of papers have been
written about numerous filter topologies that have a vast
spectrum of behavioral characteristics. These filters use a
variety of circuit topologies made possible by today’s
integrated circuits. Modern microprocessors even provide
a means whereby software can be used to develop unique
digital filters without analog circuitry. Clearly, it is far
beyond the scope of this application note to cover all
these filter topics.

The objective of this application note is to examine the
low pass (LP) filter topology attributes that are common
to both the leading edge rise time response to an input
step voltage and the amplitude frequency response. The
following bullet list represents the focus and strategy used
in this Application Note.
= It is assumed that readers are familiar with the
fundamental basics of circuit analysis.
= Basic circuit analysis fundamentals will be
mentioned to stimulate the reader’s memory.
= Equations will be given without detail derivation.
= The examination of the LP filter’s time and
frequency response will be predominately a
MATLAB graphical approach (graphs are worth
hundreds of words and equations) as opposed to the
typical text book approach, which often analyzes
filter behavior using the position of circuit poles in
the left hand side of the s-plane. More on “poles”
later.
= The LP filter topology of choice for analysis is the
Sallen-Key Active 2-pole circuit with a passive RC
section added to give an active-passive 3-pole LP
filter.
= Filter analysis is limited to leading edge rise times
and frequency response over the bandwidth.
= Phase analysis is not included.
= Only filters without numerator zeros will be
analyzed. More on “zeros” later.

A Few Little Reminders

Filter circuit topologies contain resistors, capacitors, and
inductors (modern LP filters seldom use inductors). In the
early days (100+ years ago) solutions to filter circuits
used differential equations since capacitor and inductor
behaviors were (are) derivatives of time functions.
Fortunately, numerous analytical giants have given us
analytical tools for exploring circuit behavior. For
example; (a) Charles Proteus Steinmetz introduced the
“phasor” with complex numbers for circuit analysis. (b)
Pierre Simon Laplace developed a mathematical
transformation that when applied to functions of time
introduces a new variable “s” that obeys simple rules of
arithmetic. (c) Jean Baptiste Joseph Fourier showed that a
typical time function can be expressed as a sum of
individual sinusoidal terms each with their individual
amplitude, frequency, and phase. (d) Leonhard Euler
developed the famous exponential equation “Exp(j*x) =
Cos(x) + j*Sin(x)”. Of course, we must not forget Georg
Simon Ohm and Robert Gustav Kirchhoff. Without the
contributions of these giants, circuit analysis in both time
and frequency domains would be most difficult. The
following list illustrates some reminders of R, C, and L
behavior.

R (Resistors); No change

d(v(t)

C (Capicator); i(t)=C* "

Phasor I =(j*w)*C*V, j=v-1, w=2%*f
Laplace I(s) = (s*C)*V(s)

L (Inductor);  v(t) = L*%

Phasor V=(G*wW*L)*I, j =\/j, w = 2%g*f
Laplace V(s) = (s*L)*1(s)
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Special Reminder

The term “j” used in the above equations is the symbol
commonly used in electrical engineering (other
disciplines often use “i”) to represent an “imaginary
number”. Now, there is nothing “imaginary” about this
term, it represents an actual equation value, which is
rotated 90 degrees from the x-axis (we call the x-axis the
real-axis and the y-axis the imaginary-axis). The term
“imaginary number” originated over a thousand years ago
when early mathematicians did not know what to do with
the square root of a negative number. Someone called it
“imaginary” and the name stuck. Fortunately, Steinmetz
and Euler showed us how to use this “j” notation in circuit
analysis.

Hlustrative Example

There are hundreds of LP filters circuit topologies;
however, a very popular and widely used topology is the
Sallen-Key circuit, shown in Figure 1. It is an active
topology, very flexible, and easily manufactured thanks to
the modern availability of high gain stable Op Amps
(operational amplifiers). Filter response can be tailored by
selected values of Rs and Cs; moreover, the amplifier gain
“G” adds another powerful parameter for tailoring the
filter response. In the circuit shown in Figure 1,
components R4, C4, RS, C5, and the OP Amp constitute
the active Sallen-Key circuit. The addition of R3, C3 adds
a passive circuit contribution to the overall filter response.
In these type topologies, the number of capacitors
establishes the number of poles. More on “poles” later.

This type LP filter topology is a popular workhorse,
which Dataforth designers use to build multi-pole filters
in their SCMs. Cascading circuits as illustrated in Figure
1 will implement multi-pole LP filters. For example,
cascading two circuits as shown in Figure 1 with properly
chosen Rs, Cs, and Gains creates a 6-pole LP filter.
Taking out one passive RC section in this cascade string,
creates a S5-pole LP filter (cascading a 2-pole and a 3-

pole).

I
ANy

R3 R4 R5

Vin j icg C5 j i

Figure 1
Low Pass 3-Pole Filter
Sallen-Key Active-Passive Combination

Vout

The voltage transfer function for a LP filter in Laplace
notation is T(s) defined as Vout(s)/Vin(s), and is obtained
by solving a set of circuit topology matrix equations using

Laplace transform rules. The expression for T(s) of Figure
1 is the fraction N(s)/D(s) illustrated by Eqn. 1.

_ N@) _ G

T(s) .
D(s)  b3*s>+b2*s>+b1*s+b0

Eqn1

Certain circuit topologies often have factors in the
numerator N(s) that cause T(s) to approach zero at some
frequency. For Figure 1 topology, N(s) = G in Eqn. 1 and
there are no “zeros”. As previously stated, this application
note will focus on LP filter topologies with no zeros.

The matrix equations for LP filter topology in Figure 1
show that (after some messy math) the “b” coefficients in
Eqn 1 are;

b3 = R3*C3*R4*C4*R5*C5

b2 = R3*C3*C5*(R4+R5) + R3*C3*C4*(1-G) ......
....... + R5*C5*C4*(R3+R4)

bl = R3*C3 + C5*(R3+R4+R5) + C4*(R4+R3)*(1-G)
b0=1

Note: Terms “b2” and “b1” are functions the gain “G”

For interested circuit gurus, recall that in LP filters like this,
theory shows that the *“b1” coefficients are always the sum of
open-circuit-time constants (OCT) as seen by each capacitor.

The basis of continued behavior analysis centers on the
realization that the denominator, D(s), of the transfer
function T(s) in Eqn. 1 can be factored. Recall that
factoring the polynomial denominator D(s) requires one
to set D(s) equal to zero and use “root” finding
mathematical tools to solve for the factors (roots) wl, w2,
and w3. Factoring the denominator and rearranging Eqn.
1 results in Eqn. 2.

G*wl*w2*w3
(stwl)*(s+w2)*(s+w3)
This equation format now becomes our workhorse for
analyzing both the frequency and rise time responses of

the LP filter in Figure 1 This effort becomes manageable
with mathematical tools such as Matlab and MathCAD.

T(s)= Eqgn. 2

Important Note 1: If “s” in the denominator of Eqn. 2
were to mathematically equal either -w1, or, -w2, or -w3,
then the denominator would go to zero and T(s) would go
to infinity. This is the origin of the terminology “pole”;
consequently, factors of D(s) wl, w2, w3 are called
“poles” of the filter circuit, in units of radians per second.

Important Note 2: In the Laplace matrix solution, the
variable “s” is manipulated with simple algebraic rules. In
equations such as shown in Eqn. 2 for T(s), the
“frequency” response is obtained by replacing “s” with
“i*w”. Thanks to the work of Laplace and Steinmetz!
Frequency response T(w) is now shown in Eqn. 3.
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T(w) =
G*wl*w2*w3
(j*w+w1)*(j*w+w2)*(j*w+w3)

Where w = 2*n*frequency and factors wl, w2, and w3

Eqgn. 3

have units of radians/second.

Now, the response to a sudden step input creates the
response terminology known as “rise time”, which is
typically defined as the time between 10% response to
90% response of the final value (steady state output).

The rise time response examination of a LP filter provides
us with information that we can not visually determine
directly from the frequency response analysis even though
the same circuit attributes that control frequency response
control the rise time. Recall which ones? You’re correct,
poles do it. Poles control both rise time and frequency
responses for LP filters with no zeros.

The Laplace Transform provides the best tool for deriving
LP filter step responses. The Laplace equation for a unit
step input is shown in Eqn. 4, which is derived from Eqn.
2 using the “Heaviside Partial Fraction Expansion” math
tool.

B C D
+ +

Grwl) sw2) (stwz) O

T(s) = G2+
S

_ -w2*w3
(w2-w1)*(w3-wl)

_ -wl*w3
(WI-WZ) * <W3—W2)

_ -w1*w2
(wl-w3)*(w2-w3)

The time response to a unit step input is obtained from the
rules of Inverse Laplace Transformations on Eqn. 4 with
the result shown in Eqn. 5. Note: Poles do appear in the
filter’s time response to a step input.

T(t)=G*(A+ B*e™ "+ Cxe V2" 4 Dxe ™3™y Eqn5

Time and Frequency Response Analysis

Before we begin a detail numerical examination, it is
perhaps useful to briefly list some observations about
Eqn. 3 and Eqn. 5

1. Eqgn. 3 and Eqn. 5 become normalized if G = 1
after poles are calculated using actual “G” value.

2. If the frequency is zero (j*w =0), T(w) =G

3. As the frequency approaches infinitely large
values, T(w) approaches 0 at -270 degrees.

G*wl*w2*w3

(WG wW)*(*w)

T(w) becomes =0 <-270 degrees

4. Given the set of w1, w2, w3, one can arrange the
complex equation T(w) in Eqn. 3 as a Phasor
using the rules of complex math and the works
of Steinmetz. Recall a Phasor is a Magnitude
with an Angle. Phasors allow us to examine filter
magnitude and  phase  shift  behavior
independently as functions of frequency.

Important: The roots wl, w2, w3, of the polynomial
denominator D(s) in Eqn. 2 (identified as “poles™) can be
either “real” or “complex” numbers (x+j*y) or
combinations of both. Recall that complex factors (poles)
of D(s) always occur as complex conjugate pairs, which
have identical real parts with the “j” terms differing in
sign. For example, (3+j*4) and (3-j*4) are complex
conjugate pairs. We will see later that complex poles
introduced into Eqn. 3 and Eqn. 5 are responsible for
ringing overshoots in the filter’s leading edge time
response and peaking in the filter’s frequency response.

The magnitude of Eqn.3 is often plotted in different
graphical environments using different axis scales, which
can emphasize or suppress certain filter performance
characteristics. See Figure 2.c.

Table 1 shows the component values used for Figures 2
and 3 behavior plots of the Sallen-Key circuit in Figure 1.

Table 1
Circuit Values

ID | Value ID | Value
R3 | 12k C3 | 0.005uf
R4 | 18k C4 | 0.001uf
R5 | 18k C5 | 0.002uf
G | 12354
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The plots in Figure 2 were generated by a Matlab program for the 3-Pole LP Filter Topology shown in Figure 1 with
component values from Table 1. This Matlab program changes the Op Amp gain “G” which changes the roots (poles) of D(s)
because coefficients “b2” and “b1” in Eqn. 1 are functions of “G”. These gain changes tailor the LP filter time and frequency
response data. Plots are normalized. Showing all normalized response plots together allows a single graphical view to
illustrate how different poles influence filter responses and how different frequency axis scale factors enhance or compress
behavioral traits. Bandwidth, Rise Time, and Pole data are shown below in Table 2.
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Figure 2 (a, b, c, d)
Normalized Response Plots for the LP Filter Topology in Figure 1
Plots Show Effects of Different Poles with Component Values from Table 1
Bandwidth and Rise Time Data Shown Below in Table 2
Table 2
Data for Figure 2
Gain | Pole, wl Pole, w2 Pole, w3 BW, 3dB Hz | 10%-90% Rise Time
1 18421 8899 1569 241 1.45ms
2 18264 5070 2778 356 0.97ms
3.5 18131 1907 —j*3248 1907 +j*3248 744 0.45ms
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Figure 3 is an enlarged copy of Figure 2.b and 2.d for enhanced viewing.

2 ; N S S :
5 2.b P.espon'ﬁvs.]_ngéiFlfp(ﬁleiicﬁl}i
1 “i-d
2.b : A P
Bandidth, 70.7%, ‘Response Ling | —
10’ 10° 10’ 10*
15 | T T T T T
2.d

0 05 1 1.5 2 215 3 35 4 45 5

Figure 3
Enlarged Copies of Figure 2.b and 2.d

Important Observations about Low Pass Filter Responses without N(s) Zeros
The examination of Table 2, Figures 2, and 3, illustrate some significant facts about LP filter responses as follows;

Low pass filter specifications must be viewed in both time and frequency perspectives.
Real poles do not cause a peak in the frequency response (frequency peaking).
Real poles do not cause overshooting and ringing in the leading edge time (rise time) response.
Certain combinations of real poles can increase bandwidth and decrease rise time.
Complex poles can cause frequency peaking in the bandwidth region.
Complex poles can cause ringing (over and under shoots) in the leading edge response to a unit step input.
Complex poles can cause significant increase in bandwidth and significant decrease in rise time.
The same leading edge rise time “ringing” issues occur on the response fall time, not shown here.
When a LP filter’ rise time (and fall time) rings, the settling time is an issue in addition to the amounts of over/under
shoots. Note: Settling time is determined by how long it takes for the exponential terms “Exp(-k*t)” in Eqn. 5 to decay
to zero. Mathematically this requires the time “t” to become infinitely large; therefore, settling time must be specified as
an acceptable % of the LP Filter’s final (steady state) response value to a unit step input.
Figure 2.c illustrates the frequency response of a LP Filter plotted in dB [dB = 20*Log(normalized frequency response)]
on the y-axis scale vs the Log(frequency) on the x-axis. This type plot has two important features;
a. Creates a visual illusion by suppressing frequency peaking and presents frequency response as almost flat.
b. Shows that the frequency attenuation beyond the bandwidth frequency approaches an attenuation equal to
the (number of LP filter poles) *(20) in units of dB per decade change in frequency. For example, a 3-pole
filter falls at 60dB (1E-3) per decade and a Dataforth 7-pole filter falls at 140 dB (1E-7) per decade, which
is far more effective at suppressing unwanted frequencies. See Figure 4.
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Dataforth Signal Conditioning Module (SCM) Low Pass Filter

Figure 4 represents a Dataforth SCM generic 7-pole LP filter frequency and unit step response. Dataforth designers are
professionals with decades of experience in filter design. They balance the attributes of selected poles in multi-pole filter
topologies to provide near ideal low pass filter behavior. Moreover, Dataforth realizes that industrial data acquisition and
control systems must have premium high quality filters for noise suppression and aliasing prevention. Figure 4 visually
illustrates some outstanding attributes of quality multi-pole low pass filtering that Dataforth designs in all their SCMs. These
are the qualities necessary for premium low pass filtering in SCMs. Readers are encouraged to visit Dataforth’s website and
examine Dataforth’s complete line of SCM filter attributes

No Frequency Peaking
Maximum Flatness

Figure 4
Dataforth Generic 7-Pole Low Pass Filter
BW =4Hz and Rise Time =0.090 sec.
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Rise Time vs Bandwidth

Remember the works of Jean Baptiste Joseph Fourier who
showed that a function of time could be represented by an
infinite sum of individual sinusoidal functions, each with
their individual amplitudes, frequency, and phase shift.
Consider the unit step function of time with an almost
zero rise time (certainly almost infinitely fast). In order to
represent this leading edge with a sum of individual
sinusoids (via Fourier) would require a large collection of
very high frequency sinusoids.

Low Pass Filters embedded as an integral part of any
premium quality SCM has a bandwidth frequency beyond
which high frequencies are steeply attenuated. Now this
means that the bandwidth of a SCM limits the LP filter
rise time. Therefore, one would naturally assume that
knowing the bandwidth, one should be able to determine
the 10%-90% rise time.

A simple unique closed form equation that derives the rise
time of a multi-pole LP filter given only the filter’s
bandwidth is beyond practicability. However, there is a
way to get a prediction (operative word here is prediction)
of LP filter rise time given bandwidth.

A single RC low pass filter has a 10%-90% rise time
equation of [Rise Time = 0.35/ (BW, Hz)], which says
rise time is inversely proportion to bandwidth. Does this
expression work for LP filters with multiple poles some
of which are complex?

Rise Time vs Bandwidth

1.6E-03
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10-90 Rise Time, sec
% Error

Figure 5
10%-90% Rise time vs Bandwidth in Hz
3-Pole LP Filter Figure 1, Component values Table 1
Actual vs Ideal with % Error

Figure 5 shows a comparison between actual results for
the 3-pole LP filter of Figure 1 and an ideal single pole
RC LP filter. Results give less than a 2.5% error.

Conclusion from Figure 5

Assuming a reasonably well behaved multi-pole LP filter,
one can predict (make a reasonable estimate on) the
filter’s 10%-90% rise time given the filter’s frequency
bandwidth by using [Rise Time = 0.35/ (BW, Hz)].
Using this estimate on the Dataforth 7-pole generic LP
filter in Figure 4 gives a rise time of 0.0875 sec. where
actual is 0.090 sec. This relationship only gives a
prediction, which is close; nevertheless, use it with
caution.

Final Note

To completely understand the complete characteristics of
LP filters requires one to examine filter response
specifications attributes from two different perspectives,
both “time” and “frequency”. This examination should
look at both time and frequency behavior traits necessary
for the user’s specific applications.

The reader is encouraged to visit Dataforth’s web site and
explore their complete line of isolated signal conditioning
modules and related application notes, see the reference
shown below.
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